

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

ACE3P for RF Simulation

Daniel Bowring Fermi National Accelerator Laboratory August 25, 2015

What is ACE3P?

SLAC has developed an RF simulation suite that's worth having in your toolkit.

- · Finite element code for RF structure design
- Parallel code runs large problems quickly on NERSC
- Meshing with > 1st order tetrahedra for high geometry fidelity
- Suite of programs includes (ADMX-relevant in boldface):
 - Omega3P (eigenmode solver)
 - S3P (scattering parameters)
 - ► T3P (time-domain)
 - Track3P (particle tracking for multipacting, dark current)
 - ► Pic3P (particle-in-cell)
 - ► **TEM3P** (multiphysics)
 - ▶ Plus more under development.

For more details:

K. Ko, et al., "Advances in parallel electromagnetic codes for accelerator science and development", LINAC2010, Tsukuba, Japan, 2010. **★ Fermilab**

Quick example: Eigenmode simulation of Fermilab's PXIE RF Quadrupole

Figure: Fully-featured CAD model.

ACE3P works differently from other RF codes. Here is a generalized Omega3P workflow.

Processes in green boxes run on NERSC.

Meshing with Cubit

- Developed by Sandia National Lab
- · Runs on your local machine
- · GUI or script-based design

Define geometry & mesh

Set boundary conditions

Meshing with Cubit, cont'd.

Run Omega3P

- Frequency, *Q*, other RF parameters given in a logfile when job exits.
- Postprocess for more detailed calculations (R/Q, fields on a surface, etc.)
- For Omega3P, output includes a mode file that can be viewed in Paraview.

Visualize in Paraview

Next steps

- These fields can be used in further calculations.
- Track3P: Use this solution to study dark current, resonant electron behavior.
- TEM3P: Use this solution to study detuning from thermal effects, etc.

How can ACE3P help ADMX?

How can ACE3P help ADMX?

1. Basic cavity design via S3P, Omega3P, T3P.

How can ACE3P help ADMX?

- 1. Basic cavity design via S3P, Omega3P, T3P.
- 2. Thermal effects on cavity tuning via TEM3P.

11

Benefits

 Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.

- Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.
- No scarce (b/c expensive) solver seats.

- Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.
- No scarce (b/c expensive) solver seats.
- Excellent fidelity from 2nd, 3rd-order tets.

- Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.
- No scarce (b/c expensive) solver seats.
- Excellent fidelity from 2nd, 3rd-order tets.
- Interrelated packages give ``soup to nuts" design capability.

- Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.
- No scarce (b/c expensive) solver seats.
- Excellent fidelity from 2nd, 3rd-order tets.
- Interrelated packages give ``soup to nuts" design capability.
- Very well benchmarked.

Benefits

- Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.
- No scarce (b/c expensive) solver seats.
- Excellent fidelity from 2nd, 3rd-order tets.
- Interrelated packages give ``soup to nuts" design capability.
- Very well benchmarked.

Benefits

- Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.
- No scarce (b/c expensive) solver seats.
- Excellent fidelity from 2nd, 3rd-order tets.
- Interrelated packages give ``soup to nuts" design capability.
- · Very well benchmarked.

Costs

 There's a learning curve. (Benefit?)

Benefits

- Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.
- No scarce (b/c expensive) solver seats.
- Excellent fidelity from 2nd, 3rd-order tets.
- Interrelated packages give ``soup to nuts" design capability.
- Very well benchmarked.

- There's a learning curve. (Benefit?)
- ACE3P must run on NERSC, so you need a NERSC account.

Benefits

- Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.
- No scarce (b/c expensive) solver seats.
- Excellent fidelity from 2nd, 3rd-order tets.
- Interrelated packages give ``soup to nuts" design capability.
- · Very well benchmarked.

- There's a learning curve. (Benefit?)
- ACE3P must run on NERSC, so you need a NERSC account.
- Small development team is responsive, but they have limited resources.

Benefits

- Very fast! Meshes w/ many 10⁵ tetrahedra run in minutes.
- No scarce (b/c expensive) solver seats.
- Excellent fidelity from 2nd, 3rd-order tets.
- Interrelated packages give ``soup to nuts" design capability.
- · Very well benchmarked.

- There's a learning curve. (Benefit?)
- ACE3P must run on NERSC, so you need a NERSC account.
- Small development team is responsive, but they have limited resources.
- Requires Cubit, Paraview. (Benefit?)

For more information:

ACE3P website:

Electromagnetic+Simulation+Suite

CW14 code workshop materials:

https://portal.slac.stanford.edu/sites/conf_public/cw14/Pages/default.aspx

- Some interesting papers:
 - http://accelconf.web.cern.ch/accelconf/IPAC2014/papers/wepri067.pdf
 - http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4773807
 - http://www-public.slac.stanford.edu/SciDoc/docMeta.aspx?slacPubNumber=slac-pub-15757

For more information:

ACE3P website:

```
https://confluence.slac.stanford.edu/display/AdvComp/ACE3P+-+Advanced+Computational+
Electromagnetic+Simulation+Suite
```

CW14 code workshop materials:

https://portal.slac.stanford.edu/sites/conf_public/cw14/Pages/default.aspx

- Some interesting papers:
 - http://accelconf.web.cern.ch/accelconf/IPAC2014/papers/wepri067.pdf
 - http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4773807
 - http://www-public.slac.stanford.edu/SciDoc/docMeta.aspx?slacPubNumber=slac-pub-15757
- · Thanks for your attention!

